Please login to give the feedback.
Please login to give the feedback.
U.S. specialist company Applied Energy Systems (AES) has modernized its tried-and-tested controller for supplying production lines with high-purity gases to support its application in advanced Industrie 4.0 solutions. The CP6606 Panel PC and the compact EtherCAT plug-in I/O modules from the EJ series enable significantly increased device functionality while preserving the same small dimensions of the predecessor device.
Ultra-high purity industrial gases are essential for electronics manufacturing and research projects, but because many are highly combustible or poisonous, they can also be fatal when mishandled. This complicates the process of designing systems that handle these gases, according to David Stetz, chief engineer of controls technology research and development at AES. Although safety remains the top priority, semiconductor manufacturers, for example, must also ensure high-speed throughput while ensuring quality and accuracy in the region of half a micron or less.
Providing safe, reliable, high-performance systems has been the goal of AES since it began manufacturing high purity gas systems in the mid-1980s. Applications for high-purity gases include general manufacturing, research laboratories, solar, pharmaceutical and biotech products, while the market for ultra-high purity gases includes manufacturers of aerospace components, semiconductors and other electronics. In this high-tech environment, it is very important to continue to design new products and modernize existing equipment, says Jim Murphy, general manager of AES: “We are intently focused on research and development and expanding our manufacturing operations to support Industrie 4.0 solutions and the Internet of Things (IoT) technologies that our customers require right now.” One of the key innovations in the area of ultra-high purity gases has been the GigaGuard™ GSM-V™ controller. It monitors and regulates delivery of ultra-high purity gases and was designed specifically to replace the GSM-5™ predecessor model, which is not Industrie 4.0-capable.
New development with stringent requirements:
AES introduced the GSM-5 three decades ago and installed approximately 10,000 units during the 1980s and 1990s alone. “Though thousands of these legacy products were installed, few received adequate support and maintenance, so they are approaching end of life,” David Stetz says. “In this context, a new development made perfect sense, especially to meet the trend towards IoT functionality in manufacturing. We also wanted to provide the end user with a simple plug-and-play solution and offer faster data processing, a more intuitive HMI and better networking for data transmission and continuous monitoring of gas conditions.”
The GSM-V also needs to monitor gas conditions effectively to maintain ultra-high purity levels and ensure safe working conditions. A slight lapse in the purity level could ruin an entire run of high-value products, which would result in significant financial loss. The delivery system therefore has to send out gases with at least the same purity level they had upon entry – or an even higher purity level after passing through additional filters and purifiers. Furthermore, abnormal gas conditions could be a sign of larger, potentially fatal, problems, so that real-time monitoring via the HMI and the network is essential to ensure safe operation.
A further requirement for the GSM-V project was the best possible price/ performance ratio. All of the components required to enhance the controller’s functionality needed to fit in an enclosure just 8 inches tall, 10 inches wide and 12 inches deep, which sits on the top edge of a cabinet that supplies ultra-high purity gas. David Stetz adds: “Many of these systems are hardwired in place with additional equipment built around them, such as sprinkler systems. So we could not change the form factor of the equipment if we were to maintain the drop-in replacement capability.”
For more info, visit: https://www.beckhoff.com/