• January 23, 2021
  • Register
  • Sign in
    • Forgot Password ?
    OR
    • Sign in
  • FAQ
  • Contact
  • About us
www.cnctimes.com logo
  • Editorials
    • NEWS
    • CASE STUDIES
    • INTERVIEWS
    • SUCCESS STORY
    • PRODUCT SHOWCASE
    • TECHNICAL ARTICLES
    • BLOGS
    • VIDEOS
    • NEWSLETTERS
  • Forum
  • EVENTS
  • INVENTORY
    • INVENTORY LISTINGS
    • AUCTION LISTINGS
    • WANTED LISTINGS
  • BUSINESS LEADS
    • BUYERS
    • MANUFACTURERS
    • DEALERS
  • SHOWROOM
  • JOBS
  • Register
  • Sign in
  • Contact
  • Advertise
  • Feedback

Information

Please login to give the feedback.

Information

Please login to give the feedback.

  1. Home
  2. News
  3. Overcome the Ongoing Challenges of Long-Reach Machining

Overcome the Ongoing Challenges of Long-Reach Machining

21 May, 2019
  • Tweet
  • share via email
Your comment has been posted.
We have sent you a verification email. To verify, just follow the link in the message.
Some technical error. Please try again.

A number of current trends in manufacturing are magnifying the difficulty of creating precision bores and performing turning operations with extended-length tools. Demand for tighter tolerances and unfailing repeatability grows continuously. New high-performance workpiece materials are more difficult to machine, boosting stress within the machining system. To save time and money, manufacturers are consolidating multiple parts into single monolithic workpieces that require machining of deep bores and turning of complex components on multitasking machine tools. 

 

HQ_IMG_Deep_Boring_Steadyline.jpg

 

Manufacturers seeking to overcome these challenges must study all elements of their machining systems and apply techniques and tools that will assure success. Among the key elements are machine stability, tool holding, workpiece clamping and cutting tool geometry. In general, solid fixturing, rigid tooling and careful tool application make up the basic foundation for accurate, productive boring and long-reach turning processes.

Producers of oil and gas, power generation and aerospace components are prime candidates for updated tooling and techniques because they regularly deal with large, complex parts with features that require the use of extended-length tools. Many of the parts are made from tough alloys that are difficult to machine and thereby produce high, vibration-generating cutting forces. In general, nearly any manufacturer can benefit from improving productivity and reducing costs in long-reach boring operations.

Deflection and Vibration
Deep boring is distinguished from other cutting operations in that the cutting edge operates in the bore at an extended distance from the connection to the machine. Long-reach internal turning operations feature similar conditions, and both these boring and turning operations can involve holes with interrupted cuts, as is the case on workpieces like pump or compressor housings. The amount of resulting tool overhang is dictated by the depth of the hole and can result in deflection of the boring bar or extended-length turning tool. 

Deflection magnifies the changing forces in a cutting process and can cause vibration and chatter that degrade part surface quality, quickly wear or break cutting tools and damage machine tool components, such as spindles, and cause the need for expensive repairs and long periods of downtime. The varying forces result from machine component imbalances, lack of system rigidity or sympathetic vibration of elements of the machining system. Cutting pressures also change as the tool is periodically loaded and unloaded while chips form and break. Negative effects of machining vibrations include poor surface finish, inaccurate bore dimensions, rapid tool wear, reduced material rates, increased production cost and damage to tool holders and machine tools. 

Machine Rigidity and Workpiece Fixturing 
The basic approach to controlling vibration in machining operations involves maximizing the rigidity of the elements of the machining system. To restrict unwanted movement, a machine tool should be built with rigid, heavy structural elements reinforced with concrete or other vibration-absorbing material. Machine bearings and bushings must be tight and solid. 

Workpieces must be accurately located and securely held within the machine tool. Fixtures should be designed with simplicity and rigidity as primary concerns, and clamps should be located as close as possible to the cutting operations. From a workpiece perspective, thin-walled parts or welded parts and those with unsupported sections are prone to vibration when machined. Parts can be redesigned to improve rigidity, but such design changes can add weight and compromise performance of the machined product. 

Toolholding 
To maximise rigidity, a boring bar or turning bar must be as short as possible but remain long enough to machine the entire length of the bore or component. Boring bar diameter should be the largest possible that will fit the bore and still permit efficient evacuation of cut chips.

As chips form and break, cutting forces rise and fall. The variations in force become an additional source of vibration that may interact in sympathy with the tool holder’s or machine’s natural mode of vibration and become self-sustaining or even increase. Other sources of such vibrations include worn tools or those not taking a deep enough pass. These cause process instability, or resonance that also synchronise with the natural frequency of a machine’s spindle or the tool to then generate unwanted vibrations.

A long boring bar or turning bar overhang can trigger vibration in a machining system. The basic approach to vibration control includes the use of short, rigid tools. The larger the ratio of bar length to diameter, the greater the chance that vibration will occur.

Different bar materials provide different vibration behavior. Steel bars generally are vibration resistant up to a 4:1 length to diameter of bar (L/D) ratio. Heavy metal bars made from tungsten alloys are denser than steel and can handle L/D of bar ratios in the range of 6:1. Solid carbide bars provide higher rigidity and permit up to L/D of bar ratios of 8:1, along with the possible disadvantage of higher cost, especially where a large-diameter bar is required. 

An alternative way to damp vibrations involves a tunable bar. The bar features an internal mass damper that is designed to resonate out of phase with the unwanted vibration, absorb its energy and minimise the vibratory motion. The Steadyline® system from Seco Tools (see sidebar), for example, features a pre-tuned vibration damper consisting of a damper mass made of high-density material suspended inside the toolholder bar via radial absorbing elements. The damper mass absorbs vibration immediately when it is transmitted by the cutting tool to the body of the bar.

More complex and expensive active tooling vibration control can take the form of electronically activated devices that sense the existence of vibration and use electronic actuators to produce secondary motion in the toolholder to cancel the unwanted movement. 

Workpiece Material 
The cutting characteristics of the workpiece material may contribute to the generation of vibration. The hardness of the material, a tendency to built-up edge or work hardening, or the presence of hard inclusions alter or interrupt cutting forces and may generate vibrations. To some degree, adjusting cutting parameters can minimise vibrations when machining certain materials. 

Cutting Tool Geometry
The cutting tool itself is subject to tangential and radial deflection. Radial deflection affects the accuracy of the bore diameter. In tangential deflection the insert is forced downward away from the part centerline. Especially when boring small diameter holes, the curving internal diameter of the hole reduces the clearance angle between the insert and the bore.
Tangential deflection will push the tool downward and away from the centerline of the component being machined, reducing the clearance angle. Radial deflection reduces cutting depth, affecting machining accuracy and altering chip thickness. The changes in depth of cut alter cutting forces and can result in vibration.  

 

Insert geometry features including rake, lead angle and nose radius can either magnify or damp vibration. Positive rake inserts, for instance, create less tangential cutting force. But the positive rake angle configuration can reduce clearance, which can lead to rubbing and vibration. A large rake angle and small edge angle produce a sharp cutting edge, which reduces cutting forces. However, the sharp edge may be subject to impact damage or uneven wear, which will affect surface finish of the bore. 

A small cutting edge lead angle produces larger axial cutting forces, while a large lead angle produces force in the radial direction. Axial forces have limited effect on boring operations, so a small lead angle can be desirable. But a small lead angle also concentrates cutting forces on a smaller section of the cutting edge than a large lead angle, with possible negative effect on tool life. In addition, a tool’s lead angle affects chip thickness and the direction of chip flow. 
Insert nose radius should be smaller than the cutting depth to minimise radial cutting forces. 

Chip Control
Clearing the cut chips from the bore is a key issue in boring operations. Insert geometry, cutting speeds and workpiece material cutting characteristics all influence chip control. Short chips are desirable in boring because they are easier to evacuate from the bore and minimise forces on the cutting edge. But the highly contoured insert geometries designed to break chips tend to consume more power and may cause vibration. 

Operations intended to create a good surface finish may require a light depth of cut that will produce thinner chips that magnify the chip control problem. Increasing feed rate may break chips but can increase cutting forces and generate chatter, which can negatively affect surface finishes. Higher feed rates can also cause built-up edges when machining low carbon steels, so higher cutting feed rates along with optimum internal coolant supply may be a chip control solution when boring these more malleable steel alloys.

Conclusion
Deep hole boring and turning with extended length tools are common and essential metalcutting operations. Carrying out these processes efficiently requires evaluation of the machining system as a whole to assure that the multiple factors involved in minimising vibration and assuring product quality are working together to achieve maximum productivity and profitability. 

(Sidebar) 
Productivity through passive damping tools
Steadyline tooling from Seco Tools can enable typical long-overhang operations to be performed twice as fast as with non-damped tools while enhancing part surface finish, extending tool life and reducing stress on the machine tool. The system’s passive/dynamic vibration damping technology makes it possible to accomplish certain applications, such use of tools with L/D ratios greater than 6:1 that would not otherwise be possible even at minimal machining parameters. Turning and boring operations to depths up to 10xD in small and large holes can be reliable and productive. 

The Steadyline dynamic/passive vibration control system functions on the basis of an interaction of vibration forces. In operation, a cutting force induces motion (vibration) in the holder. To counter vibration, the Steadyline® system employs the properties of an internal second mass engineered to possess the same natural frequency as the external envelope of the bar. The mass is designed to resonate out of phase with the unwanted vibration, absorb its energy and minimise the unwanted motion.

In the Steadyline® system, the vibration-absorbing mass is positioned at the front of the bar where the potential for deflection is highest, and the mass can damp vibration immediately as it is transmitted from the cutting edge to the body of the bar. The Steadyline? system also includes short, compact Seco GL cutting tool heads that place the cutting edge close to the damping mass to maximise the vibration-absorption effect. The system is adaptable to a wide range of applications and is most useful in rough and fine boring as well as contouring, pocketing and slotting.

Seco Tools has expanded its long-reach turning and boring solutions with additions to its series of Steadyline® vibration-damping turning/boring bars and cutting heads. The latest additions include 1.00" (25 mm) and 4.00" (100 mm) diameter Steadyline® bars, GL25 turning heads and a range of BA boring heads for roughing and finishing operations up to diameters of 115 mm. 

Boring and turning tool heads can be exchanged quickly using the GL connection, which provides centering accuracy and repeatability of 5 microns and 180° head orientation capability. 

The 1.00" (25 mm) diameter bars with GL25 workpiece-side connection include carbide-reinforced bars for the deepest tool overhang challenges up to 250 mm, along with Seco-Capto™, HSK-T/A and cylindrical shank machine-side interfaces. Larger 4.00" (100 mm) diameter bars accommodate existing GL50 turning heads and incorporate Jetstream Tooling® high-pressure coolant technology through BA-to-GL50 adapters.

Where conventional tooling options fail, Steadyline® delivers accuracy and confidence in long overhang operations, reducing spindle stress, increasing metal-removal rates, creating smooth surface finishes and extending tool life.

By:
The Seco Tools Tooling Systems Product Marketing and R&D Team 

 

  • Follow @CNCTimes

Captcha is required.
Sorry Captcha Unsuccessful!!

Latest News

  • 22 January, 2021

    Tungaloy Expands TungCut Grooving Inserts with New Grades and Geometries

  • 22 January, 2021

    Launch of VX 6500G and VX 6500C, Vertical Machining Centers for High-precision Graphite and Ceramic Processing

  • 22 January, 2021

    Hexagon helps Alloy Specialties increase production capacity with ‘lights-out’ robotic quality inspection

  • 18 January, 2021

    Kurt Introduces Revolutionary New Robotic Gripper

  • 18 January, 2021

    Nikon Metrology's new Detector Evaluation Package in accordance with ASTM E2737

  • 18 January, 2021

    POWER SKIVING HIGH QUALITY, PRODUCTIVITY AND COST EFFICIENCY IN GEAR CUTTING

  • 18 January, 2021

    Higher Precision Tool Gripping with New TungHold ER Rubber Sealed Spring Collets

  • 18 January, 2021

    Introducing the World’s First CIP Safety Over Ethernet/IP Safety Light Curtain

  • 18 January, 2021

    Emerson Introduces Advanced Redundant Control System-ARCS;for Increased Operational Certainty in Emergency Shut Down Situations

  • 18 January, 2021

    Accelerated Efficiency with Data-Driven Design:NEMETSCHEK Group

  • 18 January, 2021

    Turning inserts and grades for steel from Sandvik :GC4425 and GC4415

  • 18 January, 2021

    TRUMPF Venture invests in two AI/ML-powered cyber security start-ups

  • 12 January, 2021

    PCB industry embraces Han’s Elfin cobot solution for loading and unloading

  • 12 January, 2021

    Remote engineering at Walter

  • 12 January, 2021

    FARO® ZONE 3D 2021 SOFTWARE RELEASED FOR OPTIMAL FORENSIC SCENE DOCUMENTATION

  • 12 January, 2021

    DIGITAL CLAMPING ADJUSTMENT DURING PRODUCTION PROCESSES

  • 12 January, 2021

    Mastercam Announces New Optimized 5-axis Post Processor for FANUC CNCs

  • 12 January, 2021

    OPEN MIND Presents hyperMILL® 2021.1

  • 12 January, 2021

    MACHINE CHECK OF THE MAGAZINE FERTIGUNG: VGRIND 340S -Rated very Good

  • 05 January, 2021

    Launch of new additive manufacturing venture Shape-3D.

  • 05 January, 2021

    TT3005, TT3010 and TT3020 Grades Expands to Positive Insert Line

Previous Next

Related News

  • 18 January, 2021

    Turning inserts and grades for steel from Sandvik :GC4425 and GC4415

    Category: Cutting Tools
  • 29 December, 2020

    Walter's T2710 milling cutter impresses universally from 1.5 × DN

    Category: Cutting Tools
  • 16 December, 2020

    Delivering true 90° shoulder milling :Dormer Pramet

    Category: Cutting Tools
  • 15 December, 2020

    Upcoming and on demand webinars

    Category: Cutting Tools
  • 15 December, 2020

    Walter expands the TC420 Supreme thread former family

    Category: Cutting Tools
  • 08 December, 2020

    Latest J-Series Turning Tool System from Tungaloy Improves Productivity in Swiss Turning

    Category: Cutting Tools
  • 08 December, 2020

    Live and on demand webinar this week-8th to 10th Dec 2020

    Category: Cutting Tools
  • 01 December, 2020

    DrillMeister Offers DMN Drill Head for Non-Ferrous Applications

    Category: Cutting Tools

Case Studies

  • 28 March, 2019

    Overcome the Ongoing Challenges of Long-Reach Machining

    Category: Cutting Tools
  • 16 November, 2016

    Faster by the minute

    Category: Cutting Tools
  • 07 June, 2016

    Job shop in Indiana cuts insert costs in half and triples tool life with Kennametal

    Category: Cutting Tools
  • 06 June, 2016

    Solid ceramic endmills from Kennametal help meet critical delivery date

    Category: Cutting Tools
  • 28 January, 2016

    Tooling solutions from Mitsubishi Materials Corporation helped Sona BLW to achieve desired accuracy and consistency

    Category: Cutting Tools
  • 26 November, 2015

    Walter tools at work in the toughest of machining conditions

    Category: Cutting Tools
  • 05 July, 2014

    Delcam’s Vortex and Sandvik tools reduce machining time

    Category: Cutting Tools

Interviews

  • 11 December, 2017

    Accusharp believes in becoming the “Productivity Partner” to its customers

    Category: Cutting Tools
  • 01 February, 2017

    Demonetisation had little impact on Indian cutting tool industry: Prashant Sardeshmukh

    Category: Cutting Tools
  • 30 January, 2017

    Automation, digitisation will drive India’s manufacturing sector: B C Rao

    Category: Cutting Tools
  • 04 August, 2016

    MMC is committed for quick service, prompt delivery in India: Motoharu Yamamoto

    Category: Cutting Tools
  • 01 November, 2015

    Purchase pattern of Indians has changed, feels Mr Vivek Sharma

    Category: Cutting Tools

Product Showcase

  • 03 March, 2020

    Reliable Performance: The New Solid Carbide Drill with SGL-Point Geometry

    Category: Cutting Tools
  • 21 January, 2020

    MXC QCT™ — Quick Change Tooling

    Category: Cutting Tools
  • 06 May, 2019

    CHASEMILL_POWER Expanded with New 2PKT 07 Inserts and Cutters

    Category: Cutting Tools
  • 04 May, 2019

    ISBN10 delivering high feed with high versatility

    Category: Cutting Tools
  • 25 April, 2019

    Shorter cycle times as a central objective

    Category: Cutting Tools
  • 25 April, 2019

    Lightweight CoroMill® 390 produced using additive manufacturing reduces vibration in long-overhang milling

    Category: Cutting Tools
  • 23 April, 2019

    4NHT 06-F Line with Wiper on Insert’s Side for Finishing Applications

    Category: Cutting Tools
  • 10 April, 2019

    New Seco GL Threading Head Additions Expand Range of Deep-Hole Solutions

    Category: Cutting Tools
  • 01 April, 2019

    Drilling and Tapping in Stainless Steel

    Category: Cutting Tools
  • 29 March, 2019

    Tungaloy Strengthens Its Thread Milling Tool Range for Aerospace Threads

    Category: Cutting Tools
  • 28 March, 2019

    Seco Double Quattromill® 14 Maximizes Low-Horsepower Machine Performance

    Category: Cutting Tools
  • 25 March, 2019

    MillLine: TungForce-Feed from Tungaloy

    Category: Cutting Tools

Technical Articles

  • 19 February, 2019

    Group Technology: Operational Excellence in the Industry 4.0 Era

    Category: Cutting Tools
  • 30 June, 2018

    Robotic Fettling for Iron Castings- A revolution in the foundry industry

    Category: Cutting Tools
  • 22 February, 2017

    How an insert is made

    Category: Cutting Tools
  • 21 November, 2016

    All about Reaming Technology

    Category: Cutting Tools
  • 13 October, 2016

    Innovative leap in coating technology

    Category: Cutting Tools
  • 07 September, 2016

    Tale of two cutting tools – Rotary vs. Indexable

    Category: Cutting Tools
  • 15 July, 2016

    Pocket milling in titanium is an extremely tough challenge

    Category: Cutting Tools
  • 21 August, 2014

    Tips on machining Titanium, the tough material

    Category: Cutting Tools
  • 17 June, 2014

    With Seco you always know how

    Category: Cutting Tools
  • 20 February, 2014

    Of maximum security and predictability!

    Category: Cutting Tools
  • 19 February, 2014

    Square shoulder milling, a universal solution

    Category: Cutting Tools

Blogs

  • 11 July, 2018

    Advanced Machining with Industrial Robots.

    Category: Cutting Tools
  • 09 June, 2017

    Drill helix angles and their applications

    Category: Cutting Tools
  • 01 April, 2016

    Insert ISO nomenclature - the details, and what's important

    Category: Cutting Tools
  • 17 November, 2015

    End mill helix angle selection

    Category: Cutting Tools

Videos

  • 07th April, 2020

    Mr. Prashant Sardeshmukh, MD, MMC Hardmetal India : COVID 19

    Category: Cutting Tools
  • 20th April, 2019

    Coolant The Movie - Haas Automation Inc.

    Category: Cutting Tools
  • 20th April, 2019

    Basics of Drill Selection - Haas University

    Category: Cutting Tools
  • 20th April, 2019

    How carbide inserts are made by Sandvik Coromant

    Category: Cutting Tools
  • 19th April, 2019

    Tapping Essentials - Every Machinist Needs to Watch This - Haas Automation Tip of the Day

    Category: Cutting Tools
  • 02nd February, 2019

    MAG India IAS Pvt. Ltd., at IMTEX 2019

    Category: Turning Tools
  • 30th January, 2019

    Blaser Swisslube India Pvt Ltd at IMTEX 2019

    Category: Cutting Tools
  • 30th January, 2019

    Supply Point at IMTEX 2019

    Category: Cutting Tools
  • 30th January, 2019

    Electronica Hi-Tech Machine Tool Pvt Ltd at IMTEX 2019

    Category: Cutting Tools
  • 30th January, 2019

    MMC Hardmetal India Pvt Ltd at IMTEX 2019

    Category: Cutting Tools
  • 30th January, 2019

    Uptech Engineering at IMTEX 2019

    Category: Cutting Tools
  • 30th January, 2019

    P. Raj and company at IMTEX 2019

    Category: Cutting Tools

Inventory

  • 30 October, 2019

    ART 200

    Category: Cutting Tools
  • 06 May, 2019

    For Sale - Makino KE55 - Used, Good Condition

    Category: Cutting Tools
  • 05 August, 2016

    Milltronics Vertical Milling Machine ( CNC )

    Category: Cutting Tools
  • 05 August, 2016

    SCHNEIDER Double Column Horizontal Surface Grinding Machine

    Category: Cutting Tools
  • 28 April, 2016

    All Type of CNC toolings

    Category: Cutting Tools
  • 31 October, 2015

    Rollomatic CNC 6Axis Tool & Cutter Grinding

    Category: Cutting Tools
  • 31 October, 2015

    CNC Turning Center

    Category: Cutting Tools
  • 31 October, 2015

    Milling Machine

    Category: Cutting Tools
  • 31 October, 2015

    Milling Machine

    Category: Cutting Tools
  • 31 October, 2015

    Milling Machine

    Category: Cutting Tools
  • 31 October, 2015

    CNC Turning Machine

    Category: Cutting Tools
  • 31 October, 2015

    Grinding Machine

    Category: Cutting Tools

Showroom

  • 17 August, 2019

    Face Milling Machine

    Category: Cutting Tools
  • 17 August, 2019

    Automatic Keyway Milling Machine

    Category: Cutting Tools
  • 18 July, 2018

    Turning Tools

    Category: Cutting Tools
  • 18 July, 2018

    Turning Tools

    Category: Cutting Tools

TESTIMONIALS VIEW MORE

We would like to express our sincere appreciation for your service to us.You have provided us best marketing platform through CNCTimes. We look forward to extending our contract with you for years to ...

Mr.Adil Atar, Ass.Mng.Technical Sales & Service: Precision Machinekraft

Dedication and determination is key to success and CNC Times team is evident to it - FARO Business Technologies (I) Pvt Ltd

Ms. Amrita Gokhale , FARO Business Technologies

Seminar was really very good, please let us know about future seminars. we would like to attend the seminar on "Machining of the material above 60 HRc like titanum"

Roshan Deshmukh, Design Engineer - Ashvini Magnets Private Limited

FOLLOW US

TECHNOLOGY FOCUS

    Machine Tools

    • CNC Lathe
    • Boring Machines
    • Drilling Machines
    • Spark Erosion
    • Wire Cut
    • Vertical Machining Centers - VMC
    • Horizontal Machining Centers - HMC
    • Grinding Machines
    • Gear Cutting Machines
    • Additive Manufacturing - RP
    • Multi-Axis Machines
    • Multi-Tasking Machines
    • Welding Machines
    • Presses
    • Laser Cutting
    • Others
    • IIoT

    Metrology

    • CMM
    • VMM ( Vision Measuring Machines )
    • PCMM ( Portable CMM )
    • Measuring Instruments
    • Probing Technology
    • 3D Scanners
    • Roundness Measurement
    • Surface Roughness Measurement
    • Contour Measuring Machines
    • Others

    Accessories

    • Workholding
    • Toolholders
    • Spindles
    • Coolants
    • Others

    Software

    • CAD
    • CAM
    • CAE
    • ERP
    • Inspection Software
    • Reverse Engineering Software
    • MES
    • Others

    Mechatronics

    • Robotics
    • Automation
    • CNC Controllers
    • Others

    Cutting Tools

    • Turning Tools
    • Milling Tools
    • Grinding Wheels
    • Drilling
    • Others

INDUSTRY VERTICALS

  • General
  • Automotive
  • Aerospace
  • Healthcare
  • Healthcare Engineering
  • FMCG
  • Consumer Durable
  • Defence
  • Electronics
  • Oil & Gas
  • Heritage
  • Heavy Engineering
  • Die & Mold
  • Plastic
  • Footwear
  • Jobshop

POLICIES

  • Payment Policy
  • Terms of Use

PROFILE

  • About us
© 2021 www.cnctimes.com
Developed & Maintained by CNCTimes.com